
Lmod Documentation
Release 6.0

Robert McLay

Jan 09, 2020

Contents

1 PURPOSE 1

2 OVERVIEW 3

3 Introduction to Lmod 5

4 Installing Lmod 21

5 Advanced Topics 37

6 Topics yet to be written 53

7 Indices and tables 55

i

ii

CHAPTER 1

PURPOSE

Lmod is a Lua based module system that easily handles the MODULEPATH Hierarchical problem. Environment
Modules provide a convenient way to dynamically change the users’ environment through modulefiles. This includes
easily adding or removing directories to the PATH environment variable. Modulefiles for Library packages provide
environment variables that specify where the library and header files can be found.

1

Lmod Documentation, Release 6.0

2 Chapter 1. PURPOSE

CHAPTER 2

OVERVIEW

This guide is written to explain what Environment Modules are and why they are very useful for both users and
system administrators. Lmod is an implementation of Environment Modules, much of what is said here is true for any
environment modules system but there are many features which are unique to Lmod.

Environment Modules provide a convenient way to dynamically change the users’ environment through modulefiles.
This includes easily adding or removing directories to the PATH environment variable.

A modulefile contains the necessary information to allow a user to run a particular application or provide access to a
particular library. All of this can be done dynamically without logging out and back in. Modulefiles for applications
modify the user’s path to make access easy. Modulefiles for Library packages provide environment variables that
specify where the library and header files can be found.

Packages can be loaded and unloaded cleanly through the module system. All the popular shells are supported: bash,
ksh, csh, tcsh, zsh. Also available for perl and python.

It is also very easy to switch between different versions of a package or remove it.

3

Lmod Documentation, Release 6.0

4 Chapter 2. OVERVIEW

CHAPTER 3

Introduction to Lmod

If you are new to Lmod then please read the User Guide and possibly the Frequently Asked Questions Guide. Users
who wish to read about how to have their own personal modules should read the Advanced User Guide.

3.1 User Guide for Lmod

The guide here explains how to use modules. The User’s tour of the module command covers the basic uses of
modules. The other sections can be read at a later date as issues come up. The Advance user’s guide is for users
needing to create their own modulefiles.

3.1.1 User’s Tour of the Module Command

The module command sets the appropriate environment variable independent of the user’s shell. Typically the system
will load a default set of modules. A user can list the modules loaded by:

$ module list

To find out what modules are available to be loaded a user can do:

$ module avail

To load packages a user simply does:

$ module load package1 package2 ...

To unload packages a user does:

$ module unload package1 package2 ...

A user might wish to change from one compiler to another:

5

Lmod Documentation, Release 6.0

$ module swap gcc intel

The above command is short for:

$ module unload gcc
$ module load intel

If a module is not available then an error message is produced:

$ module load packageXYZ
Warning: Failed to load: packageXYZ

It is possible to try to load a module with no error message if it does not exist:

$ module try-load packageXYZ

Modulefiles can contain help messages. To access a modulefile’s help do:

$ module help packageName

To get a list of all the commands that module knows about do:

$ module help

The module avail command has search capabilities:

$ module avail cc

will list for any modulefile where the name contains the string “cc”.

Modulefiles can have a description section know as “whatis”. It is accessed by:

$ module whatis pmetis
pmetis/3.1 : Name: ParMETIS
pmetis/3.1 : Version: 3.1
pmetis/3.1 : Category: library, mathematics
pmetis/3.1 : Description: Parallel graph partitioning..

Finally, there is a keyword search tool:

$ module keyword word1 word2 ...

This will search any help or whatis description for the word(s) given on the command line.

Another way to search for modules is with the “module spider” command. This command searches the entire list of
possible modules. The difference between “module avail” and “module spider” is explained in the “Module Hierarchy”
and “Searching for Modules” section.

$ module spider

ml: A convenient tool

For those of you who can’t type the mdoule, moduel, err module command correctly, Lmod has a tool for you. With ml
you won’t have to type the module command again. The two most common commands are module list*and *module
load <something> and ml does both:

6 Chapter 3. Introduction to Lmod

Lmod Documentation, Release 6.0

$ ml

means module list. And:

$ ml foo

means module load foo while:

$ ml -bar

means module unload bar. It won’t come as a surprise that you can combine them:

$ ml foo -bar

means module unload bar; module load foo. You can do all the module commands:

$ ml spider
$ ml avail
$ ml show foo

If you ever have to load a module name spider you can do:

$ ml load spider

If you are ever force to type the module command instead of ml then that is a bug and should be reported.

SAFETY FEATURES

(1): Users can only have one version active.

If a user does:

$ module avail xyz

--------------- /opt/apps/modulefiles ----------------
xyz/8.1 xyz/11.1 (D) xyz/12.1

$ module load xyz
$ module load xyz/12.0

The first load command will load the 11.1 version of xyz. In the second load, the module command knows that the
user already has xyz/11.1 loaded so it unloads that and then loads xyz/12.0. This protection is only available with
Lmod.

(2) : Users can only load one compiler or MPI stack at a time.

Lmod provides an additional level of protection. If each of the compiler modulefiles add a line:

family("compiler")

Then Lmod will not load another compiler modulefile. Another benefit of the modulefile family directive is that
an environment variable “LMOD_COMPILER_FAMILY” is assigned the name (and not the version). This can be
useful specifying different options for different compilers. In the High Performance Computing (HPC) world, the
message passing interface (MPI) libraries are important. The mpi modulefiles can contain a family(“MPI”) directive

3.1. User Guide for Lmod 7

Lmod Documentation, Release 6.0

which will prevent users from loading more than one MPI implementation at a time. Also the environment variable
“LMOD_FAMILY_MPI” is defined to the name of the mpi library.

Module Hierarchy

Libraries built with one compiler need to be linked with applications with the same compiler version. If sites are going
to provide libraries, then there will be more than one version of the library, one for each compiler version. Therefore,
whether it is the Boost library or an mpi library, there are multiple versions.

There are two main choices for system administrators. For the XYZ library compiled with either the UCC compiler
or the GCC compiler, there could be the xyz-ucc modulefile and the xyz-gcc module file. This gets much more
complicated when there are multiple versions of the XYZ library and different compilers. How does one label the
various versions of the library and the compiler? Even if one makes sense of the version labeling, when a user changes
compilers, the user will have to remember to unload the ucc and the xyz-ucc modulefiles when changing to gcc and
xyz-gcc. If users have mismatched modules, their programs are going to fail in very mysterious ways.

A much saner strategy is to use a module hierarchy. Each compiler module adds to the MODULEPATH a compiler
version modulefile directory. Only modulefiles that exist in that directory are packages that have been built with that
compiler. When a user loads a particular compiler, that user only sees modulefile(s) that are valid for that compiler.

Similarly, applications that use libraries depending on MPI implementations must be built with the same compiler -
MPI pairing. This leads to modulefile hierarchy. Therefore, as users start with the minimum set of loaded modules, all
they will see are compilers, not any of the packages that depend on a compiler. Once they load a compiler they will
see the modules that depend on that compiler. After choosing an MPI implementation, the modules that depend on
that compiler-MPI pairing will be available. One of the nice features of Lmod is that it handles the hierarchy easily. If
a user swaps compilers, then Lmod automatically unloads any modules that depends on the old compiler and reloads
those modules that are dependent on the new compiler.

$ module list

1) gcc/4.4.5 2) boost/1.45.0

$ module swap gcc ucc

Due to MODULEPATH changes the follow modules have been reloaded: 1) boost

If a modulefile is not available with the new compiler, then the module is marked as inactive. Every time MOD-
ULEPATH changes, Lmod attempts to reload any inactive modules.

Searching For Modules

When a user enters:

$ module avail

Lmod reports only the modules that are in the current MODULEPATH. Those are the only modules that the user
can load. If there is a modulefile hierarchy, then a package the user wants may be available but not with the current
compiler version. Lmod offers a new command:

$ module spider

which lists all possible modules and not just the modules that can be seen in the current MODULEPATH. This com-
mand has three modes. The first mode is:

8 Chapter 3. Introduction to Lmod

Lmod Documentation, Release 6.0

$ module spider

lmod: lmod/lmod
Lmod: An Environment Module System

ucc: ucc/11.1, ucc/12.0, ...
Ucc: the ultimate compiler collection

xyz: xyz/0.19, xyz/0.20, xyz/0.31
xyz: Solves any x or y or z problem.

This is a compact listing of all the possible modules on the system. The second mode describes a particular module:

$ module spider ucc
--
ucc:
--

Description:
Ucc: the ultimate compiler collection

Versions:
ucc/11.1
ucc/12.0

The third mode reports on a particular module version and where it can be found:

$ module spider parmetis/3.1.1
--
parmetis: parmetis/3.1.1
--
Description:
Parallel graph partitioning and fill-reduction matrix ordering routines

This module can be loaded through the following modules:
ucc/12.0, openmpi/1.4.3
ucc/11.1, openmpi/1.4.3
gcc/4.4.5, openmpi/1.4.3

Help:
The parmetis module defines the following environment variables: ...
The module parmetis/3.1.1 has been compiled by three different versions of the ucc
→˓compiler and one MPI implementation.

Controlling Modules During Login

Normally when a user logs in, there are a standard set of modules that are automatically loaded. Users can override
and add to this standard set in two ways. The first is adding module commands to their personal startup files. The
second way is through the “module save” command.

To add module commands to users’ startup scripts requires a few steps. Bash users can put the module commands in
either their ~/.profile file or their ~/.bashrc file. It is simplest to place the following in their ~/.profile
file:

3.1. User Guide for Lmod 9

Lmod Documentation, Release 6.0

if [-f ~/.bashrc]; then
. ~/.bashrc

fi

and place the following in their ~/.bashrc file:

if [-z "$BASHRC_READ"]; then
export BASHRC_READ=1
Place any module commands here
module load git

fi

By wrapping the module command in an if test, the module commands need only be read in once. Any sub-shell will
inherit the PATH and other environment variables automatically. On login shells the ~/.profile file is read which,
in the above setup, causes the ~/.bashrc file to be read. On interactive non-login shells, the ~/.bashrc file is
read instead. Obviously, having this setup means that module commands need only be added in one file and not two.

Csh users need only specify the module commands in their ~/.cshrc file as that file is always sourced:

if (! $?CSHRC_READ) then
setenv CSHRC_READ 1
Place any module command here
module load git

endif

User defined initial list of login modules:

Assuming that the system administrators have installed Lmod correctly, there is a second way which is much easier to
setup. A user logs in with the standard modules loaded. Then the user modifies the default setup through the standard
module commands:

$ module unload XYZ
$ module swap gcc ucc
$ module load git

Once users have the desired modules load then they issue:

$ module save

This creates a file called ~/.lmod.d/default which has the list of desired modules. Once this is setup a user can
issue:

$ module restore

and only the desired modules will be loaded during login.

Users can have as many collections as they like. They can save to a named collection with:

$ module save <collection_name>

and restore that named collection with:

$ module restore <collection_name>

Finally a user can print the contents of a collection with:

$ module describe <collection_name>

10 Chapter 3. Introduction to Lmod

Lmod Documentation, Release 6.0

3.2 An Introduction to Writing Modulefiles

This is a different kind of introduction to Lmod. Here we will remind you what Lmod is doing to change the en-
vironment via modulefiles. Then we will start with the four functions that are typically needed for any modulefile.
From there we will talk about intermediate level module functions when things get more complicated. Finally we
will discuss the advanced module functions to flexibly control your site via modules. All the Lua module functions
available are described at Lua Modulefile Functions. This discussion shows how they can be used.

3.2.1 A Reminder of what Lmod is doing

All Lmod is doing is changing the environment. Suppose you want to use the “ddt” debugger installed on your system
which is made available to you via the module. If you try to execute ddt without the module loaded you get:

$ ddt
bash: command not found: ddt

$ module load ddt
$ ddt

After the ddt module is loaded, executing ddt now works. Let’s remind ourselves why this works. If you try checking
the environment before loading the ddt modulefile:

$ env | grep -i ddt
$ module load ddt
$ env | grep -i ddt

DDTPATH=/opt/apps/ddt/5.0.1/bin
LD_LIBRARY_PATH=/opt/apps/ddt/5.0.1/lib:...
PATH=/opt/apps/ddt/5.0.1/bin:...

$ module unload ddt
$ env | grep -i ddt
$

The first time we check the environment we find that there is no ddt stored there. But the second time there we see
that the PATH and LD_LIBRARY_PATH have been modified. Note that we have shorten the path-like variables to
show the important changes. There are also several environment variables which have been set. After unloading the
module all the references for ddt have been removed. We can see what the modulefile looks like by doing:

$ module show ddt

help([[
For detailed instructions, go to:

https://...

]])
whatis("Version: 5.0.1")
whatis("Keywords: System, Utility")
whatis("URL: http://content.allinea.com/downloads/userguide.pdf")
whatis("Description: Parallel, graphical, symbolic debugger")

setenv("DDTPATH", "/opt/apps/ddt/5.0.1/bin")
prepend_path("PATH", "/opt/apps/ddt/5.0.1/bin")
prepend_path("LD_LIBRARY_PATH","/opt/apps/ddt/5.0.1/lib")

3.2. An Introduction to Writing Modulefiles 11

Lmod Documentation, Release 6.0

Modulefiles are state the actions that need to happen when loading. For example the above modulefile uses setenv and
prepend_path to set environment variables and prepend to the PATH. If the above modulefile is unloaded then the
setenv actually unsets the environment variable. The prepend_path removes the element from the PATH variable.
That is unload causes the functions to be reversed.

3.2.2 Basic Modulefiles

There are two main module functions required, namely setenv and prepend_path; and two functions to provide docu-
mentation help and whatis. The modulefile for ddt shown above contains all the basics required to create one. Suppose
you are writing this module file for ddt version 5.0.1 and you are placing it in the standard location for your site, namely
/apps/modulefiles and this directory is already in MODULEPATH. Then in the directory /apps/modulefiles/ddt you
create a file called 5.0.1.lua which contains the modulefile shown above.

This is the typical way of setting a modulefile up. Namely the package name is the name of the directory, ddt, and
version name, 5.0.1 is the name of the file with the .lua extension added. We add the lua extension to all modulefile
written in Lua. All modulefiles without the lua extension are assumed to be written in TCL.

If another version of ddt becomes available, say 5.1.2, we create another file called 5.1.2.lua to become the new
modulefile for the new version of ddt.

When a user does module help ddt, the arguments to the help function are written out to the user. The whatis function
provides a way to describe the function of the application or library. This data can be used by search tools such as
module keyword search_words. Here at TACC we also use that data to provide search capability via the web interface
to modules we provide.

3.2.3 Intermediate Level Modulefiles

The four basic functions describe above is all that is necessary for the majority of modulefiles for application and
libraries. The intermediate level is designed to describe some situations that come up as you need to provide more
than just packages modulefile but need to set up a system.

Meta Modules

Some sites create a single module to load a default set of modules for all users to start from. This is typically called a
meta module because it loads other modules. As an example of that, we here at TACC have created the TACC module
to provide a default compiler, mpi stack and other modules:

help([[
The TACC modulefile defines ...
]])

-- 1 --
if (os.getenv("USER") ~= "root") then

append_path("PATH", ".")
end

-- 2 --
load("intel", "mvapich2")

-- 3 --
try_load("xalt")

-- 4 --
-- Environment change - assume single threaded.

(continues on next page)

12 Chapter 3. Introduction to Lmod

Lmod Documentation, Release 6.0

(continued from previous page)

if (mode() == "load" and os.getenv("OMP_NUM_THREADS") == nil) then
setenv("OMP_NUM_THREADS","1")

end

This modulefile shows the use of four new functions. The first one is append_path. This function is similar to
prepend_path except that the value is placed at the end of the path-like variable instead of the beginning. We add
. to our user’s path at the end, except for root. This way our new users don’t get surprised with some programs in
their current directory that do not run. We used the os.getenv function built-in to Lua to get the value of environment
variable “USER”.

The second function is load, this function loads the modulefiles specified. This function takes one or more names.
Here we are specifying a default compiler and mpi stack. The third function is try_load, which is similar to load
except that there is no error reported if the module can’t be found.

The fourth block of code shows how we set OMP_NUM_THREADS. We wish to set OMP_NUM_THREADS
to have a default value of 1, but only if the value hasn’t already been set and we only want to do this when the
module is being loaded and not at any other time. So when this module is loaded for the first time mode() will
return “load” and OMP_NUM_THREADS won’t have a value. The setenv will set it to 1. If the TACC module
is unloaded, the mode() will be “unload” so the if test will be false and therefore the setenv will not be reversed.
If the user changes OMP_NUM_THREADS and reloads the TACC modulefile, their value won’t change because
os.getenv(“OMP_NUM_THREADS”) will return a non-nil value, therefore the setenv command won’t run. Now
this may not be the best way to handle this. It might be better to set OMP_NUM_THREADS in a file that is sourced
in /etc/profile.d/ and have all the important properties. Namely that there will be a default value that the user can
change. However this example shows how to do something tricky in a modulefile.

Typically meta modules are a single file and not versioned. So the TACC modulefile can be found at
/apps/modulefiles/TACC.lua. There is no requirement that this will be this way but it has worked well in practice.

Modules with dependencies

Suppose that you have a package which needs libraries or an application. For example the octave application needs
gnuplot. Let’s assume that you have a separate applications for both. Inside the octave module you can do:

prereq("gnuplot")
...

So if you execute:

$ module unload gnuplot
$ module load octave
$ module load gnuplot octave
$ module unload octave

The second module command will fail, but the third one will succeed because we have met the prerequisites. The
advantage of using prereq is after fourth module command is executed, the gnuplot module will be loaded.

This can be contrasted with including the load of gnuplot in the octave modulefile:

load("gnuplot")
...

This simplifies the loading of the octave module. The trouble is that when a user does the following:

$ module load gnuplot
$ module load octave
$ module unload octave

3.2. An Introduction to Writing Modulefiles 13

Lmod Documentation, Release 6.0

is that after unloading octave, the gnuplot module is also unloaded. It seems better to either use the prereq function
shown above or use the always_load function in the octave module:

always_load("gnuplot")
...

Then when a user does:

$ module load gnuplot
$ module load octave
$ module unload octave

The gnuplot module will still be loaded after unloading octave. This will lead to the least confusion to users.

Fancy dependencies

Sometimes an application may depend on another application but it has to be a certain version or newer. Lmod can
support this with the atleast modifier to both load, always_load or prereq. For example:

-- Use either the always_load or prereq but not both:

prereq(atleast("gnuplot","5.0"))
always_load(atleast("gnuplot","5.0"))

The atleast modifier to prereq or always_load will succeed if the version of gnuplot is 5.0 or greater.

Assigning Properties

Modules can have properties that will be displayed in a module list or module avail. Properties can be anything but
they must be specified in the lmodrc.lua file. You are free to add to the list. For example, to specify a module to be
experimental all you need to do is:

add_property("state","experimental")

Any properties you set must be defined in the lmodrc.lua file. In the source tree the properties are in init/lmodrc.lua.
A more detailed discussion of the lmodrc.lua file can be found at lmodrc-label

Pushenv

Lmod allows you to save the state in a stack hidden in the environment. So if you want to set the CC environment
variable to contain the name of the compiler.:

-- gcc --
pushenv("CC","gcc")

-- mpich --
pushenv("CC","mpicc")

If the user executes the following:

SETENV PUSHENV
$ export CC=cc; echo $CC # -> CC=cc CC=cc
$ module load gcc; echo $CC # -> CC=gcc CC=gcc
$ module load mpich; echo $CC # -> CC=mpicc CC=mpicc

(continues on next page)

14 Chapter 3. Introduction to Lmod

Lmod Documentation, Release 6.0

(continued from previous page)

$ module unload mpich; echo $CC # -> CC is unset CC=gcc
$ module unload gcc; echo $CC # -> CC is unset CC=cc

We see that the value of CC is maintained as a stack variable when we use pushenv but not when we use setenv.

Setting aliases and shell functions

Sometimes you want to set an alias as part of a module. For example the visit program requires the version to be
specified when running it. So for version 2.9 of visit, the alias is set:

set_alias("visit","visit -v 2.9")

Whether this will expand correctly depends on the shell. While C-shell allows argument expansion in aliases, Bash
and Zsh do not. Bash and Zsh use shell functions instead. For example the ml shell function can be set like this:

local bashStr = 'eval $($LMOD_DIR/ml_cmd "$@")'
local cshStr = "eval `$LMOD_DIR/ml_cmd $*`"
set_shell_function("ml",bashStr,cshStr)

3.3 Frequently Asked Questions

How does the module command work?

We know that the child program inherits the parents’ environment but not the other way around. So it
is very surprising that a command can change the current shell’s environment. The trick here is that the
module command is a two part process. The module shell function in bash is:

$ type module
module() { eval $($LMOD_CMD bash "$@") }

Where $LMOD_CMD points to your lmod command (say /apps/lmod/lmod/libexec/lmod). So if you have
a module file (foo/1.0) that contains:

setenv("FOO", "BAR")

then “$LMOD_CMD bash load foo/1.0” produces:

export FOO=BAR
...

The eval command read that output from stdout and changes the current shell’s environment. Any text
written to stderr bypasses the eval and written to the terminal.

What are the environment variables _ModuleTable001_, _ModuleTable002_, etc doing it in the environment?

The module command remembers its state in the environment through these variables. The way Lmod
does it is through a Lua table called ModuleTable:

ModuleTable = {
mT = {

git = { ... }
}

}

3.3. Frequently Asked Questions 15

Lmod Documentation, Release 6.0

This table contains quotes and commas and must be store in environment. To prevent problems the various
shells, the table is encoded into base64 and split into blocks of 256 characters. These variable are decoded
at the start of Lmod. You can see what the module table contains with:

$ module --mt

How does one debug a modulefile?

There are two methods. Method 1: If you are writing a Lua modulefile then you can write messages to
stderr with and run the module command normally:

local a = "text"
io.stderr:write("Message ",a,"\n")

Method 2: Take the output directly from Lmod. You can put print() statements in your modulefile and do:

$ $LMOD_CMD bash load *modulefile*

Why doesn’t % module avail |& grep ucc work under tcsh and works under bash?

It is a bug in the way tcsh handles evals. This works:

% (module avail) |& grep ucc

However, in all shells it is better to use:

% module avail ucc

instead as this will only output modules that have “ucc” in their name.

Why are messages printed to standard error and not standard out?

The module command is an alias under tcsh and a shell routine under all other shells. There is an lmod
command which writes out commands such as export FOO=”bar and baz” and messages are written to
standard error. The text written to standard out is evaluated so that the text strings make changes to the
current environment.

Can I disable the pager output?

Yes, you can. Just set the environment variable LMOD_PAGER to none.

Can I force the output of list, avail and spider to go to stdout instead of stderr?

Bash and Zsh user can set the environment variable LMOD_REDIRECT to yes. Sites can configure Lmod
to work this way by default. However, no matter how Lmod is set-up, this will not work with tcsh/csh due
to limitations of this shell.

Can I ignore the spider cache files when doing module avail?

Yes you can:

$ module --ignore_cache avail

or you can set:

$ export LMOD_IGNORE_CACHE=1

to make Lmod ignore caches as long as the variable is set.

I have created a module and “module avail” can’t find it. What do I do?

Assuming that the modulefile is in MODULEPATH then you have an out-of-date cache. Try running:

16 Chapter 3. Introduction to Lmod

Lmod Documentation, Release 6.0

$ module --ignore_cache avail

If this does find it then you might have an old personal spider cache. To clear it do:

$ rm -rf ~/.lmod.d/.cache

If “module avail” doesn’t find it now, then the system spider cache is out-of-date. Please ask your system
administrator to update the cache. If you are the system administrator then please read System Spider
Cache and user-spider-cache-label

Why doesn’t the module command work in shell scripts?

It will if the following steps are taken. First the script must be a bash script and not a shell script, so start
the script with #!/bin/bash. The second is that the environment variable BASH_ENV must point to a
file which defines the module command. The simplest way is having BASH_ENV point to /opt/apps/
lmod/lmod/init/bash or wherever this file is located on your system. This is done by the standard
install. Finally Lmod exports the module command for Bash shell users.

How do I use the initializing shell script that comes with this application with Lmod?

The short answer is you don’t. Among the many problems is that there is no way to unload that shell
script. If the script is simple you can read it through and create a modulefile. To simplify this task, Lmod
provides the sh_to_modulefile script to convert shell scripts to modulefiles.

Why is the output of module avail not filling the width of the terminal?

If the output of module avail is 80 characters wide, then Lmod can’t find the width of the terminal
and instead uses the default size (80). If you do module --config, you’ll see a line:

Active lua-term true

If it says false instead then lua-term is not installed. One way this happens is to build Lmod on one
computer system that has a system lua-term installed and the package on another where lua-term isn’t
installed on the system.

Why does isn’t the module defined when using the screen program?

The screen program starts a non-login interactive shell. The Bash shell startup doesn’t start sourcing
/etc/profile and therefore the /etc/profile.d/*.sh scripts for non-login interactive shells. You can
patch bash and fix /etc/bashrc (see Issues with Bash for a solution) or you can fix your ~/.bashrc
to source /etc/profile.d/*.sh

You may be better off using tmux instead. It starts a login shell.

Why does LD_LIBRARY_PATH get cleared when using the screen program?

The screen program is guid program. That means it runs as the group of the program and not the group
associated with the user. For security reason all of these program clear LD_LIBRARY_PATH.

You may be better off using tmux instead. It is a regular program.

3.4 Advanced User Guide for Personal Modulefiles

This advanced guide is for users wishing to create modulefiles for their own software. The reasons are simple:

1. Install newer version of open sources software than is currently available.

2. Easily change version of applications or libraries under their own development.

3. Better documentation for what software is available.

3.4. Advanced User Guide for Personal Modulefiles 17

Lmod Documentation, Release 6.0

You can create new version of some software and place it in your personal PATH and forget about it. At least when it
is in a module, it will be listed in the loaded modules it will also appear in the list of available software via module
avail

3.4.1 User Created Modules

Users can create their own modules. The first step is to add to the module path:

$ module use /path/to/personal/modulefiles

This will prepend /path/to/personal/modulefiles to the MODULEPATH environment variable. This
means that any modulefiles defined here will be used instead of the system modules.

Suppose that the user creates a directory called $HOME/modulefiles and he wants a personal copy of the “git”
package and he does the usual “tar, configure, make, make install” steps:

$ wget https://www.kernel.org/pub/software/scm/git/git-2.6.2.tar.gz
$ tar xf git-2.6.2.tar.gz
$ cd git-2.6.2
$./configure --prefix=$HOME/pkg/git/2.6.2
$ make
$ make install

This document has assumed that 2.6.2 is the current version of git, it will need to be replaced with the current version.
To create a modulefile for git one does:

$ cd ~/modulefiles
$ mkdir git
$ cd git
$ cat > 2.6.2.lua
local home = os.getenv("HOME")
local version = myModuleVersion()
local pkgName = myModuleName()
local pkg = pathJoin(home,"pkg",pkgName,version,"bin")
prepend_path("PATH", pkg)
^D

Starting first from the name: git/2.6.2.lua, modulefiles with the .lua extension are assumed to be written in lua and
files without are assumed to be written in TCL. This modulefile for git adds ~/pkg/git/2.6.2/bin to the user’s
path so that the personal version of git can be found. Note that the use of the functions myModuleName() and
myModuleVersion() allows the module to be generic and not hard-wired to a particular module file. We have used
the cat command to quickly create this lua modulefile. Obviously, this file can easily created by your favorite editor
(emacs, vi, nano, . . .).

Starting first from the name: git/2.6.2.lua, Modulefiles with the .lua extension are assumed to be written in lua and
files without are assumed to be written in TCL.

The first line reads the user’s HOME directory from the environment. The second line uses the “pathJoin” function
provided from Lmod. It joins strings together with the appropriate number of “/”. The last line calls the “prepend_path”
function to add the path to git to the user’s path.

Finally the user can do:

$ module use $HOME/modulefiles
$ module load git
$ type git
~/pkg/git/2.6.2/bin/git

18 Chapter 3. Introduction to Lmod

Lmod Documentation, Release 6.0

For git to be available on future logins, users need to add the following to their startup scripts or a saved collection.

$ module use $HOME/modulefiles
$ module load git

The modulefiles can be stored in different directories. There is an environment variable MODULEPATH which controls
that. Modulefiles that are listed in an earlier directory are found before ones in later directories. This is similar to
command searching in the PATH variable. There can be several versions of a command. The first one found in the
PATH is used.

3.4.2 Finding Modules With Same Name

Suppose the user has created a “git” module to provide the latest available. At a later date, the system administrators
add a newer version of “git”

$ module avail git
--------------- /home/user/modulefiles ----------------
git/2.6.2

--------------- /opt/apps/modulefiles ----------------
git/1.7.4 git/2.0.1 git/3.5.4 (D)

$ module load git

The load command will load git/3.5.4 because it is the highest version.

If a user wishes to make their own version of git the default module, they will have to mark it as a default. Marking a
module as a default is discussed in section Marked a Version as Default

3.4. Advanced User Guide for Personal Modulefiles 19

Lmod Documentation, Release 6.0

20 Chapter 3. Introduction to Lmod

CHAPTER 4

Installing Lmod

Anyone wishing to install Lmod on a personal computer or for a system should read the Installation Guide as well as
the Transitioning to Lmod Guide. The rest of the guides can be read as needed.

4.1 Installing Lua and Lmod

Environment modules simplify customizing the users’ shell environment and it can be done dynamically. Users load
modules as they see fit. It is completely under their control. Environment Modules or simply modules provide a simple
contract or interface between the system administrators and users. System administrators provide modules and users
get to choose which to load.

There have been environment module systems for quite a while. See http://modules.sourceforge.net/ for a TCL based
module system and see http://www.lysator.liu.se/cmod for another module system. Here we describe Lmod, which
is a completely new module system written in Lua. For those who have used modules before, Lmod automatically
reads TCL modulefiles. Lmod has some important features over other module system, namely a built-in solution to
hierarchical modulefiles and provides additional safety features to users as described in the User Guide.

The hierarchical modulefiles are used to solve the issue of system pre-built libraries. User applications using these
libraries must be built with the same compiler as the libraries. If a site provides more than one compiler, then for
each compiler version there will be separate versions of the libraries. Lmod provides built-in control making sure that
compilers and pre-built libraries stay matched. The rest of the pages here describe how to install Lmod, how to provide
the module command to users during the login process and some discussion on how to install optional software and
the associated modules.

The goal of installing Lmod is when completed, any user will have the module command defined and a preset list of
modules will be loaded. The module command should work without modifying the users startup files (~/.bashrc,
~/.profile, ~/.cshrc, or ~/.zshenv). The module command should be available for login shells, interactive
shells, and non-interactive shells. The command ssh YOUR_HOST module list should work. This will require
some understanding of the system startup procedure for various shells which is covered here.

21

http://modules.sourceforge.net/
http://www.lysator.liu.se/cmod

Lmod Documentation, Release 6.0

4.1.1 Installing Lua

In this document, it is assumed that all optional software is going to be installed in /opt/apps. The installation of Lmod
requires installing lua as well. On some system, it is possible to install Lmod directly with your package manager. It
is available with recent fedora, debian and ubuntu distributions.

Install lua-X.Y.Z.tar.gz

One choice is to install the lua-X.Y.Z.tar.gz file. This tar ball contains lua and the required libraries. This can be
downloaded from https://sourceforge.net/projects/lmod/files/:

$ wget https://sourceforge.net/projects/lmod/files/lua-5.1.4.5.tar.gz

The current version is 5.1.4.5 but it may change in the future. This can be installed using the following commands:

$ tar xf lua-X.Y.Z.tar.gz
$ cd lua-X.Y.Z
$./configure --prefix=/opt/apps/lua/X.Y.Z
$ make; make install
$ cd /opt/apps/lua; ln -s X.Y.Z lua
$ mkdir /usr/local/bin; ln -s /opt/apps/lua/lua/bin/lua /usr/local/bin

The last command is optional, but you will have to somehow put the lua command in your path. Also obviously,
please replace X.Y.Z with the actual version (say 5.1.4.5)

Using Your Package Manager

You can use your package manager for your OS to install Lua. You will also need the matching packages: lua
Filesystem (lfs) and luaposix. On Ubuntu Linux, the following packages will work:

liblua5.1-0
liblua5.1-0-dev
liblua5.1-filesystem-dev
liblua5.1-filesystem0
liblua5.1-posix-dev
liblua5.1-posix0
lua5.1

Note; Centos may require looking the EPEL repo. At TACC we install the following rpms:

$ rpm -qa | grep lua

lua-posix-5.1.7-1.el6.x86_64
lua-5.1.4-4.1.el6.x86_64
lua-filesystem-1.4.2-1.el6.x86_64
lua-devel-5.1.4-4.1.el6.x86_64

You will also need the libtcl and tcl packages as well.

Using Luarocks

If you have installed lua but still need luafilesystem and luaposix, you can install the luarocks program from your
package manager or directly from https://luarocks.org/. The luarocks programs can install many lua packages
including the ones required for Lmod.

22 Chapter 4. Installing Lmod

https://sourceforge.net/projects/lmod/files/
https://luarocks.org/

Lmod Documentation, Release 6.0

$ luarocks install luaposix; luarocks install luafilesystem

Now you have to make the lua packages installed by luarocks to be known by lua. On our Centos system, Lua knowns
about the following for *.lua files:

$ lua -e 'print(package.path)'
./?.lua;/usr/share/lua/5.1/?.lua;/usr/share/lua/5.1/?/init.lua;/usr/lib64/lua/5.1/?.
→˓lua;/usr/lib64/lua/5.1/?/init.lua;

and the following for shared libraries:

$ lua -e 'print(package.cpath)'
./?.so;/usr/lib64/lua/5.1/?.so;/usr/lib64/lua/5.1/loadall.so;

Assuming that luarocks has installed things in its default location (/usr/local/. . .) then you’ll need to do:

LUAROCKS_PREFIX=/usr/local
export LUA_PATH="$LUAROCKS_PREFIX/share/lua/5.1/?.lua;$LUAROCKS_PREFIX/share/lua/5.1/?
→˓/init.lua;;"
export LUA_CPATH="$LUAROCKS_PREFIX/lib/lua/5.1/?.so;;"

Please change LUAROCKS_PREFIX to match your site. The exporting of LUA_PATH and LUA_CPATH must be
done before any module commands. It is very important that the trailing semicolon are there. They are replaced by
the built-in system path.

4.1.2 Why does Lmod install differently?

Lmod automatically creates a version directory for itself. So, for example, if the installation prefix is set to /apps,
and the current version is X.Y.Z, installation will create /apps/lmod and /apps/lmod/X.Y.Z. This way of
configuring is different from most packages. There are two reasons for this:

1. Lmod is designed to have just one version of it running at one time. Users will not be switching version during
the course of their interaction in a shell.

2. By making the symbolic link the startup scripts in /etc/profile.d do not have to change. They just refer to
/apps/lmod/lmod/... and not /apps/lmod/X.Y.Z/...

4.1.3 Installing Lmod

Lmod has a large number of configuration options. They are discussed in the Configuring Lmod Guide. This section
here will describe how to get Lmod installed quickly by using the defaults:

Note: If you have a large number of modulefiles or a slow parallel filesystem please read the Configure Lmod Guide
on how to set-up the spider caching system. This will greatly speed up module avail and module spider

To install Lmod, you’ll want to carefully read the following. If you want Lmod version X.Y installed in /opt/apps/
lmod/X.Y, just do:

$./configure --prefix=/opt/apps
$ make install

The installation will also create a link to /apps/lmod/lmod. The symbolic link is created to ease upgrades to
Lmod itself, as numbered versions can be installed side-by-side, testing can be done on the new version, and when all
is ready, only the symbolic link needs changing.

4.1. Installing Lua and Lmod 23

Lmod Documentation, Release 6.0

To create such a testing installation, you can use:

$ make pre-install

which does everything but create the symbolic link.

In the init directory of the source code, there are profile.in and cshrc.in templates. During the instal-
lation phase, the path to lua is added and profile and cshrc are written to the /apps/lmod/lmod/init
directory. These files are created assuming that your modulefiles are going to be located in /apps/modulefiles/
$LMOD_sys and /apps/modulefiles/Core, where $LMOD_sys is what the command “uname” reports, (e.g.,
Linux, Darwin). The layout of modulefiles is discussed later.

Note: Obviously you will want to modify the profile.in and cshrc.in files to suit your system.

The profile file is Lmod initialization script for the bash, and zsh shells and cshrc file is for tcsh and csh shells. Please
copy or link the profile and cshrc files to /etc/profile.d

$ ln -s /opt/apps/lmod/lmod/init/profile /etc/profile.d/z00_lmod.sh
$ ln -s /opt/apps/lmod/lmod/init/cshrc /etc/profile.d/z00_lmod.csh

To test the setup, you just need to login as a user. The module command should be set and MODULEPATH should be
defined. Bash or Zsh users should see something like:

$ type module
module ()
{

eval $($LMOD_CMD bash $*)
}

$ echo $LMOD_CMD
/opt/apps/lmod/lmod/libexec/lmod

$ echo $MODULEPATH
/opt/apps/modulefiles/Linux:/opt/apps/modulefiles/Core

Similar for csh users:

% which module
module: alias to eval `/opt/apps/lmod/lmod/libexec/lmod tcsh !*`

% echo $MODULEPATH
/opt/apps/modulefiles/Linux:/opt/apps/modulefiles/Core

If you do not see the module alias then please read the next section.

4.1.4 Integrating module Into Users’ Shells

Bash:

On login, the bash shell first reads /etc/profile, and if profiles.d is activated, that in turn should source all
the *.sh files in /etc/profile.d with something like:

if [-d /etc/profile.d]; then
for i in /etc/profile.d/*.sh; do

(continues on next page)

24 Chapter 4. Installing Lmod

Lmod Documentation, Release 6.0

(continued from previous page)

if [-r $i]; then
. $i

fi
done

fi

Similarly, the system BASHRC file should source all the *.sh files in /etc/profile.d as well. Here is where
things can get complicated. See the next section for details.

Bash Shell Scripts:

Bash shell scripts do not source any system or user files before starting execution. Instead it looks for the environment
variable BASH_ENV. It treats the contents as a filename and sources it before starting a bash script.

Bash Script Note:

It is important to remember that all bash scripts should start with:

#!/bin/bash

Starting with:

#!/bin/sh

and sh is linked to bash won’t define the module command. Bash will run those scripts in shell emulation mode and it
doesn’t source the file that BASH_ENV points to.

Csh:

Csh users have an easier time with the module command setup. The system cshrc file is always sourced on every
invocation of the shell. The system cshrc file it typically called: /etc/csh.cshrc. This file should source all the
*.csh files in /etc/profile.d:

if (-d /etc/profile.d) then
set nonomatch
foreach i (/etc/profile.d/*.csh)
source $i

end
unset nonomatch

endif

Zsh:

Zsh users have an easy time with the module command setup as well. The system zshenv file is sourced on all shell
invocations. This system file can be in a number of places but is typically in /etc/zshenv or /etc/zsh/zshenv
and should have:

if [-d /etc/profile.d]; then
setopt no_nomatch
for i in /etc/profile.d/*.sh; do
if [-r $i]; then

. $i
fi

(continues on next page)

4.1. Installing Lua and Lmod 25

Lmod Documentation, Release 6.0

(continued from previous page)

setopt nomatch
done

fi

4.1.5 Issues with Bash

Interactive Non-login shells

The Bash startup procedure for interactive non-login shells is complicated and varies between Operating Systems. In
particular, Redhat & Centos distributions of Linux as well as Mac OS X have no system bashrc read during startup
where as Debian based distributions do source a system. One easy way to tell how bash is set up is to execute the
following:

$ strings `type -p bash` | grep bashrc

If the entire results of the command is:

~/.bashrc

then you know that your bash shell doesn’t source a system BASHRC file.

If you want to have the same behavior between both interactive shell (login or non) and your system doesn’t source a
system bashrc, then you have two choices:

1. Patch bash so that it does source a system bashrc. See contrib/bash_patch for details on how to do that.

2. Expect all of your bash users to have the following in their ~/.bashrc

if [-f /etc/bashrc]; then
. /etc/bashrc

fi

As a side note, we at TACC patched bash for a different reason which may apply to your site. When an MPI job starts,
it logs into each node with an interactive non-login shell. When we had no system bashrc file, many of our fortran 90
programs failed because they required ulimit -s unlimited which makes the stack size unlimited. By patching
bash, we could guarantee that it was set by the system on each node. Sites will have to chose which of the two above
methods they wish to deal with this deficiency in bash.

You may have to also change the /etc/bashrc (or /etc/bash.bashrc) file so that it sources /etc/profile.d/*.sh for non-login
shells.

Bash Shell Scripts

Bash shell scripts, unlike Csh or Zsh scripts, do not source any system or user files. Instead, if the environment
variable, BASH_ENV is set and points to a file then this file is sourced before the start of bash script. So by default
Lmod sets BASH_ENV to point to the bash script which defines the module command.

It may seem counter-intuitive but Csh and Zsh users running bash shell scripts will want BASH_ENV set so that the
module command will work in their bash scripts.

A bash script is one that starts as the very first line:

#!/bin/bash

A script that has nothing special or starts with:

26 Chapter 4. Installing Lmod

Lmod Documentation, Release 6.0

#!/bin/sh

is a shell script. And even if /bin/sh points to /bin/bash bash runs in a compatibility mode and doesn’t honor
BASH_ENV.

To combat this Lmod exports the definition of the module command. This means that even /bin/sh scripts will have
the module command defined when run by a Bash User. However, a Csh or Zsh user running a bash script will still
need the BASH_ENV and run bash scripts. They won’t have the module command defined if they run an sh script.

4.2 How to Transition to Lmod (or how to test Lmod without installing
it for all)

In the Installing Lua and Lmod document, we described how to install Lua and Lmod for all. Sites which are currently
running another environment module system will likely wish to test and then transition from their old module system
to Lmod. This can be smoothly with changing all users on some Tuesday.

It is important to remember the following facts:

• Lmod reads modulefiles written in TCL. There is typically no need to translate modulefiles written in TCL into
Lua. Lmod does this for you automatically.

• Some users can run Lmod while others use the old environment module system.

• However no user can run both at the same time in the same shell.

Obviously, since you are installing Lmod in your own account, this is a good way to test Lmod without committing
your site to switch. Part of this document will describe TACC’s transition experience.

4.2.1 Steps for Testing Lmod in your account

1. Install Lua

2. Install Lmod in your account

3. Build the list modules required

4. Purge modules using old module command

5. Reload modules using Lmod

Install Lua

The previous document described how to install Lua. If your system doesn’t provide package for Lua, then it is
probably easy to install the lua tarball found at sourceforge.net using the following command:

$ wget https://sourceforge.net/projects/lmod/files/lua-W.X.Y.Z.tar.gz

where you replace the W.X.Y.Z with the current version (i.e. 5.1.4.8).

Many Linux distributions already have a lua package and it may even be install automatically. For example recent
Centos and other Redhat based distributions automatically install Lua as part of the rpm tools.

Once you have lua installed and in your path. You’ll need luafilesystem and luaposix libraries to complete the require-
ments. See the previous document on how to install these libraries via your package manager or luarocks.

4.2. How to Transition to Lmod (or how to test Lmod without installing it for all) 27

Lmod Documentation, Release 6.0

Install Lmod

Please follow the previous document on how to install Lmod. Let’s assume that you have installed Lmod in your own
account like this:

$./configure --prefix=$HOME/pkg
$ make install

This will install Lmod in $HOME/pkg/lmod/x.y.z and make a symbolic link to $HOME/pkg/lmod/lmod.

Build the list of modules required

Many sites provide a default set of modules. When testing, you’ll want to be able to load those list of modules using
Lmod. Using your old module system, login and do:

$ module list

Currently Loaded Modules:

1) a1 3) A 5) b2 7) B
2) a2 4) b1 6) b3

It turns out that both the latest version of TCL/C modules and the pure TCL script list a module that loads other
modules later in the list. In this made up case we unload module B and notice that unloading the B module also
unloads modules b3, b2 and b1. Then unloading the A module also unloads modules a2 and a1. In this case then we
would set:

export LMOD_SYSTEM_DEFAULT_MODULES=A:B

Purge modules using old module command

Execute:

$ module purge

to unload the currently loaded modules using the old module command.

Reload modules using Lmod

Once all modules have been purge and the environment variable LMOD_SYSTEM_DEFAULT_MODULES has been
set. All that are required are to redefine the module command to use Lmod and to restore the default set of modules
by:

$ export BASH_ENV=$HOME/pkg/lmod/lmod/init/bash
$ source $BASH_ENV

This will define the module command. Finally the default set of modules can be loaded.

$ module –initial_load restore

This command first looks to see if there is a default collection in ~/.lmod.d/default. If that file isn’t found then it uses
the value of variable LMOD_SYSTEM_DEFAULT_MODULES as a list of module to load.

If you have gotten this far then you have installed Lmod in your account. Congratulations!

28 Chapter 4. Installing Lmod

Lmod Documentation, Release 6.0

Please test your system. Try to load your most complicated modulefiles. See if module avail, module spider works
and so on.

If you have trouble loading certain TCL modulefiles then read the How Lmod reads TCL modulefiles to see why
you might have problems.

4.2.2 An example of how this can be done in your bash startup scripts

All the comments above can be combined into a complete example:

if [-z "$_INIT_LMOD"]; then
export _INIT_LMOD=1 # guard variable is crucial, to avoid breaking

→˓existing modules settings
type module > /dev/null 2>&1
if ["$?" -eq 0]; then

module purge >2 /dev/null # purge old modules using old module command.
clearMT # clear the stored module table (wipe _

→˓ModuleTable001_ etc.)
fi

export MODULEPATH=... # define MODULEPATH
export BASH_ENV=$HOME/pkg/lmod/lmod/init/bash # Point to the new definition of Lmod

source $BASH_ENV # Redefine the module command to
→˓point

to the new Lmod
export LMOD_SYSTEM_DEFAULT_MODULES=... # Colon separated list of modules

to load at startup
module --initial_load restore # load either modules listed above

→˓or the
user's ~/.lmod.d/default module

→˓collection
else

source $BASH_ENV # redefine the module command for
→˓sub-shell

module refresh # reload all modules but only
→˓activate the "set_alias"

functions.
fi

Obviously, you will have to define MODULEPATH and LMOD_SYSTEM_DEFAULT_MODULES to match your
site setup. The reason for the guard variable _INIT_LMOD is that the module command and the initialization of the
modules is only done in the initial login shell. On any sub-shells, the module command gets defined (again). Finally
the module refresh command is called to define any alias or shell functions in any of the currently loaded modules.

4.2.3 How to Transition to Lmod: Staff & Power User Testing

Once you have tested Lmod personally and wish to transition your site to use Lmod, I recommend the following
strategy for staff and friendly/power users for testing:

1. Install Lua and Lmod in system locations

2. Install /etc/profile.d/z00_lmod.sh to redefine the module command

3. Load system default modules (if any) after previous steps

4. Only user who have a file named ~/.lmod use Lmod

4.2. How to Transition to Lmod (or how to test Lmod without installing it for all) 29

Lmod Documentation, Release 6.0

5. At TACC, we did this for 6 months.

Using this strategy, you can have extended testing without exposing Lmod to any user which hasn’t opted-in.

How to Deploy Lmod

Once Staff testing is complete and you are ready to deploy Lmod to your users it is quite easy to switch to an opt-out
strategy:

1. Change /etc/profile.d/z00_lmod.sh so that everyone is using Lmod

2. If a user has a ~/.no.lmod then they continue to use your original module system

3. At TACC we did this for another 6 months

4. We broke Environment Module support with the family directive

5. We now only support Lmod

6. Both transitions generated very few tickets (2+2)

4.3 Lua Modulefile Functions

Lua is an efficient language built on simple syntax. Readers wanting to know more about lua can see http://www.lua.
org/. This simple description given here should be sufficient to write all but the most complex modulefiles.

It is important to understand that modulefiles are written in the positive. That is one writes the actions necessary
to activate the package. A modulefile contains commands to add to the PATH or set environment variables. When
loading a modulefile the commands are followed. When unloading a modulefile the actions are reversed. That is the
element that was added to the PATH during loading, is removed during unloading. The environment variables set
during loading are unset during unloading.

prepend_path (“PATH”,”/path/to/pkg/bin”): prepend to a path variable the value.

append_path (“PATH”,”/path/to/pkg/bin”): append to a path variable the value.

remove_path (“PATH”,”/path/to/pkg/bin”): remove value from path. This command is a no-op when the mode is
unload.

setenv (“NAME”, “value”): assigns to the environment variable “NAME” the value.

pushenv (“NAME”, “value”): sets NAME to value just like setenv. In addition it saves the previous value in a
hidden environment variable. This way the previous state can be returned when a module is unloaded.

unsetenv (“NAME”): unset the value associated with “NAME”. This command is a no-op when the mode is unload.

whatis (“STRING”): The whatis string, can be called repeatedly with different strings. See the Administrator Guide
for more details.

help ([[help string]]): What is printed out when the help command is called. Note that the help string can be
multi-lined.

pathJoin (“/a”,”b/c/”,”d/”): builds a path: “/a/b/c/d”, It combines any number of strings with one slash and removes
excess slashes. Note that trailing slash is removed. If you need a trailing slash then do pathJoin(“/a”,”b/c”) ..
“/” to get “/a/b/c/”.

load (“pkgA”, “pkgB”, “pkgC”): load all modules. Report error if unable to load.

try_load (“pkgA”, “pkgB”, “pkgC”): load all modules. No errors reported if unable to load.

always_load (“pkgA”, “pkgB”, “pkgC”): load all modules. However when this command is reversed it does noth-
ing.

30 Chapter 4. Installing Lmod

http://www.lua.org/
http://www.lua.org/

Lmod Documentation, Release 6.0

set_alias (“name”,”value”): define an alias to name with value.

unload (“pkgA”, “pkgB”): When in load mode the modulefiles are unloaded. It is not an error to unload modules
that where not loaded. When in unload mode, this command does nothing.

family (“name”): A user can only have one family “name” loaded at a time. For example family(“compiler”) would
mean that a user could only have one compiler loaded at a time.

prereq (“name1”, “name2”): The current modulefile will only load if all the listed modules are already loaded.

prereq_any (“name1”, “name2”): The current modulefile will only load if any of the listed modules are already
loaded.

conflict (“name1”, “name2”): The current modulefile will only load if all listed modules are NOT loaded.

4.3.1 Extra functions

The entries below describe several useful commands that come with Lmod that can be used in modulefiles.

os.getenv (“NAME”): Ask for environment for the value of “NAME”. Note that if the “NAME” might not be in the
environment, then it is probably best to do:

local foo=os.getenv("FOO") or ""

otherwise foo will have the value of nil.

capture (“string”): Run the “string” as a command and capture the output.

isFile (“name”): Returns true if “name” is a file.

isDir (“name”): Returns true if “name” is a directory.

splitFileName (“name”): Returns both the directory and the file name. local d,f=splitFileName("/a/b/
c.ext"). Then d="/a/b", f="c.ext"

LmodMessage (“string”,. . .): Prints a message to the user.

LmodError (“string”,”. . . ”): Print Error string and exit without loading the modulefile.

mode (): Returns the string “load” when a modulefile is being loaded and “unload” when unloading.

isLoaded (“NAME”): Return true when module “NAME” is loaded.

LmodVersion (): The version of lmod.

execute {cmd=”<any command>”,modeA={“load”}} Run any command with a certain mode. For example execute
{cmd=”ulimit -s unlimited”,modeA={“load”}} will run the command ulimit -s unlimited as the last thing that
the loading the module will do.

4.3.2 Modifier functions to prereq and loads

atleast (“name”,”version”): This modifier function will only succeed if the module is “version” or newer.

between (“name”,”v1”,”v2”): This modifier function will only succeed if the module’s version is equal to or between
“v1” and “v2”.

latest (“name”): This modifier function will only succeed if the module has the highest version on the system.

4.3. Lua Modulefile Functions 31

Lmod Documentation, Release 6.0

4.3.3 Introspection Functions

The following functions allow for more generic modulefiles by finding the name and version of a modulefile.

myModuleName (): Returns the name of the current modulefile without the version.

myModuleVersion (): Returns the version of the current modulefile.

myModuleFullName (): Returns the name and version of the current modulefile.

myModuleUsrName (): Returns the name the user specified to load a module. So it could be the name or the name
and version.

myFileName (): Returns the absolute file name of the current modulefile.

myShellName ():

Returns the name of the shell the user specified on the command line.

hierarchyA (“fullName”, level): Returns the hierarchy of the current module. See the section on Generic Modules
for more details.

4.4 How Lmod Picks which Modulefiles to Load

Lmod use the directories listed in MODULEPATH to find the modulefiles to load. Suppose that you have a single
directory /opt/apps/modulefiles that has the following files and directories:

/opt/apps/modulefiles

StdEnv.lua ucc/ xyz/

./ucc:
8.1.lua 8.2.lua

./xyz:
10.1.lua

Lmod will report the following directory tree like this:

---------- /opt/apps/modulefiles -----------
StdEnv ucc/8.1 ucc/8.2 (D) xyz/10.1

We note that the .lua extension has not been reported above. The .lua extension tells Lmod that the contents of
the file are written in the Lua language. All other files are assumed to be written in TCL.

Here the name of the file or directory under /opt/apps/modulefiles is the name of the module. The normal
way to specify a module is to create a directory to be the name of the module and the file(s) under that directory are
the version(s). So we have created ucc and xyz directories to be the names of the module. There are two version
files under ucc and one version file under xyz.

The StdEnv.lua file is the another way to specify a module. This file is a module with no version associated with
it. These are typically used as a meta-module. That is a module that loads other modules.

4.4.1 Picking modules when there are multiple directories in MODULEPATH

When there are multiple directories specified in MODULEPATH, the rules get more complicated on what modulefile
to load. Lmod uses the following rules to locate a modulefile:

32 Chapter 4. Installing Lmod

Lmod Documentation, Release 6.0

1. It looks for an exact match in all MODULEPATH directories. Picking the first match it finds.

2. If the user requested name is a full name and version, and there is no exact match then it stops.

3. If the name doesn’t contain a version then Lmod looks for a marked default in the first directory that has one.

4. Finally it looks for the “Highest” Version in all MODULEPATH directories. If there are two or more modulefiles
with the “Highest” version then the first one in MODULEPATH order will be picked.

5. As a side node, if there are two version files, one with a .lua extension and one without, the lua file will be
used over the other one. It will like the other file is not there.

As an example, suppose you have the following module tree:

---------- /home/user/modulefiles -----------
xyz/11.1

---------- /opt/apps/modulefiles -----------
StdEnv ucc/8.1 ucc/8.2 xyz/10.1

---------- /opt/apps/mfiles ----------------
ucc/8.3 (D) xyz/12.1 (D)

If a user does the following command:

$ module load ucc/8.2 xyz

then ucc/8.2 will be loaded because the user specified a particular version and xyz/12.1 will be loaded be cause it is
the highest version across all directories in MODULEPATH.

4.4.2 Marked a Version as Default

Suppose you have several versions of the mythical UCC compiler suite:

$ module avail ucc
---------- /opt/apps/modulefiles/Core -----------
ucc/8.1 ucc/9.2 ucc/11.1 ucc/12.2 (D)

and you like to make the 11.1 version the default. Lmod searches three different ways to mark a version as a default
in the following order. The first way is to make a symbolic link between a file named “default” and the desired
default version.:

$ cd /opt/apps/modulefiles/Core/ucc; ln -s 11.1.lua default

A second way to mark a default is with a .modulerc file in the same directory as the modulefiles.:

#%Module
module-version ucc/11.1 default

There is a third method to pick the default module. If you create a .version file in the ucc directory that contains:

#%Module
set ModulesVersion "11.1"

Please note that either a .modulerc or .version file must be in the same directory as the 11.1.lua file in order for Lmod
to read it.

Using any of the above three ways will change the default to version 11.1.

4.4. How Lmod Picks which Modulefiles to Load 33

Lmod Documentation, Release 6.0

$ module avail ucc
---------- /opt/apps/modulefiles/Core -----------
ucc/8.1 ucc/9.2 ucc/11.1 (D) ucc/12.2

4.4.3 Highest Version

If there is no marked default then Lmod chooses the “Highest” version across all directories:

$ module avail ucc

---------- /opt/apps/modulefiles/Core -----------
ucc/8.1 ucc/9.2 ucc/11.1 ucc/12.2

---------- /opt/apps/modulefiles/New -----------
ucc/13.2 (D)

The “Highest” version is by version number sorting. So Lmod “knows” that the following versions are sorted from
lowest to highest:

2.4dev1
2.4a1

2.4beta2
2.4rc1

2.4
2.4.0.0
2.4-1

2.4.0.0.1
2.4.1

4.4.4 Autoswaping Rules

When Lmod autoswaps hierarchical dependencies, it uses the following rules:

1. If a user loads a default module, then Lmod will reload the default even if the module version has changed.

2. If a user loads a module with the version specified then Lmod will only load the exact same version when
swapping dependencies.

For example a user loads the intel and boost library:

$ module purge; module load intel boost; module list

Currently Loaded Modules:
1) intel/15.0.2 2) boost/1.57.0

Now swapping the Intel compiler suite for the Gnu compiler suite:

The following have been reloaded with a version change:
1) boost/1.57.0 => boost/1.56.0

Here boost has been reloaded with a different version because the default is different in the gcc hierarchy. However if
the user does:

34 Chapter 4. Installing Lmod

Lmod Documentation, Release 6.0

$ module purge; module load intel boost/1.57.0; module list

Currently Loaded Modules:
1) intel/15.0.2 2) boost/1.57.0

And:

$ module swap intel gcc;

Inactive Modules:
1) boost/1.57.0

Since the user initially specified loading boost/1.57.0 then Lmod assumes that the user really wants that version.
Because version 1.57.0 of boost isn’t available under the gcc hierarchy, Lmod marks this boost module as inactive.
This is true even though version 1.57.0 is the default version of boost under the Intel hierarchy.

4.5 Providing A Standard Set Of Modules for all Users

Users can be provided with an initial set of modulefiles as part of the login procedure. Once a list of modulefiles have
been installed, please create a file called StdEnv.lua and place it in the $MODULEPATH list of directories, typically
/opt/apps/modulefiles/Core/StdEnv.lua. The name is your choice, the purpose is provide a standard
list of modules that get loaded during login. In StdEnv.lua is something like:

load("name1","name2","name3")

Using the /etc/profile.d directory system described earlier to create a file called z00_StdEnv.sh

if [-z "$__Init_Default_Modules"]; then
export __Init_Default_Modules=1;

ability to predefine elsewhere the default list
LMOD_SYSTEM_DEFAULT_MODULES=${LMOD_SYSTEM_DEFAULT_MODULES:-"StdEnv"}
export LMOD_SYSTEM_DEFAULT_MODULES
module --initial_load restore

else
module refresh

fi

Similar for z00_StdEnv.csh:

if (! $?__Init_Default_Modules) then
setenv __Init_Default_Modules 1
if (! $?LMOD_SYSTEM_DEFAULT_MODULES) then
setenv LMOD_SYSTEM_DEFAULT_MODULES "StdEnv"

endif
module --initial_load restore

else
module refresh

endif

The z00_Stdenv.* names are chosen because the files in /etc/profile.d are sourced in alphabetical order. These names
guarantee they will run after the module command is defined.

The first time these files are sourced by a shell they will set LMOD_SYSTEM_DEFAULT_MODULES to StdEnv and
then execute module restore. Any subshells will instead call module refresh. Both of these statements are
important to get the correct behavior out of Lmod.

4.5. Providing A Standard Set Of Modules for all Users 35

Lmod Documentation, Release 6.0

The module restore tries to restore the user’s default collection. If that doesn’t exist, it then uses contents of the
variable LMOD_SYSTEM_DEFAULT_MODULES to find a colon separated list of Modules to load.

The module refresh solves an interesting problem. Sub shells inherit the environment variables of the parent but
do not normally inherit the shell aliases and functions. This statement fixes this. Under a “refresh”, all the currently
loaded modules are reloaded but in a special way. Only the functions which define alias and shell functions are active,
all others functions are ignored.

The above is an example of how a site might provide a default set of modules that a user can override with a default
collection. Site are, of course, free to setup Lmod any way they like. The minimum required setup (for bash with
z00_StdEnv.sh) would be:

if [-z "$__Init_Default_Modules"]; then
export __Init_Default_Modules=1;

module --initial_load restore
else

module refresh
fi

The module restore command still depends on the environment variable LMOD_SYSTEM_DEFAULT_MODULES
but that can be set somewhere else.

4.5.1 Lmod, LD_LIBRARY_PATH and screen

In general, it is probably better to NOT use screen and use tmux instead. The problem with screen is that it guid
program (tmux is not). That means it uses the group associated with the executable and not the user’s group. The
main consequence of this is that the operating system removes LD_LIBRARY_PATH from the environment. This is a
security feature built into the operating system.

A site could change z00_StdEnv.sh to have:

if [-z "$__Init_Default_Modules" -o -z "$LD_LIBRARY_PATH"]; then
export __Init_Default_Modules=1;

module --initial_load restore
else

module refresh
fi

to help with the situation. This will force Lmod restore the initial set of modules (or the user’s default collection).
This works fine as long as the initial set of modules actually sets LD_LIBRARY_PATH. If it doesn’t every interactive
sub-shell will do a module restore, which is probably not what you want. For example, if you see the following then
you probably want to remove the test for an empty LD_LIBRARY_PATH:

$ module list
Currently Loaded Modules:

1) gcc/5.2 2) StdEnv

$ module load bowtie
$ bash
$ module list
Currently Loaded Modules:

1) gcc/5.2 2) StdEnv

Running the bash shell caused the module restore to run which unloaded all modules and restored the modules back
to the initial set.

36 Chapter 4. Installing Lmod

CHAPTER 5

Advanced Topics

5.1 How to report a bug in Lmod

Lmod has some built-in tools to make debugging possible on your site. The first feature of Lmod is the configuration
report:

$ module --config

This reports how Lmod has been configured at build time as well as any LMOD_* environment variables set. The
second tool is the debug output also built-in to Lmod:

$ module -D load foo 2> load.log

The -D option turns on the debug printing and will report all the steps that Lmod took to load a module called foo.
Note that the configuration report is at the top of every debug output.

5.1.1 Steps to report a bug

1. Test your bug against the latest release from github. Please pull the HEAD branch.

2. Try to reduce the problem to the fewest number of modules. Shoot for 1 or 2 modulefiles if you can.

3. Run the command that fails. i.e. module -D cmd module . . . 2> lmod.log‘‘

4. Combine the lmod.log file, the modulefiles from step 2, and possibly the spider cache file into a tar file.

5. Send the tar file to mclay@tacc.utexas.edu

5.2 How to use a Software Module hierarchy

Libraries built with one compiler need to be linked with applications with the same compiler version. For High Perfor-
mance Computing there are libraries called Message Passing Interface (MPI) that allow for efficient communicating

37

mailto:mclay@tacc.utexas.edu

Lmod Documentation, Release 6.0

between tasks on a distributed memory computer with many processors. Parallel libraries and applications must be
built with a matching MPI library and compiler. To make this discussion clearer, suppose we have the intel compiler
version 15.0.1 and the gnu compiler collection version 4.9.2. Also we have two MPI libraries: mpich version 3.1.2
and openmpi version 1.8.2. Finally we have a parallel library HDF5 version 1.8.13 (phdf5).

Of the many possible ways of specifying a module layout, this flat layout of modules is a reasonable way to do this:

$ module avail

--------------- /opt/apps/modulefiles ----------------------
gcc/4.9.2 phdf5/gcc-4.9-mpich-3.1-1.8.13
intel/15.0.2 phdf5/gcc-4.9-openmpi-15.0-1.8.13
mpich/gcc-4.9-3.1.2 phdf5/intel-15.0-mpich-3.1-1.8.13
mpich/intel-15.0-3.1.2 phdf5/intel-15.0-openmpi-15.0-1.8.13
openmpi/gcc-4.9-1.8.2
openmpi/intel-15.0-1.8.2

In order for users to load the matching set of modules, they will have to load the matching set of modules. For example
this would be correct:

$ module load gcc/4.9.2 openmpi/gcc-4.9-1.8.2 phdf5/gcc-4.9-openmpi-15.0-1.8.13

It is quite easy to load an incompatible set of modules. Now it is possible that the system administrators at your site
might have setup conflict s to avoid loading mismatched modules. However using conflicts can be fragile. What
happens if a site adds a new compiler such as clang or pgi or a new mpi stack. All those module file conflict statements
will have to be updated.

A different strategy is to use a software hierarchy. In this approach a user loads a compiler which extends the MOD-
ULEPATH to make available the modules that are built with the currently loaded compiler (similarly for the mpi
stack).

Our modulefile hierarchy is stored under /opt/apps/modulefiles/{Core,Compiler,MPI}. The Core
directory is for modules that are not dependent on Compiler or MPI implementations. The Compiler directory is
for packages which are only Compiler dependent. Lastly, the MPI directory is packages which dependent on MPI-
Compiler pairing. The modulefiles for the compilers are placed in the Core directory. For example the gcc version
4.9.2 file is in Core/gcc/4.9.2.lua and contains:

-- Setup Modulepath for packages built by this compiler
local mroot = os.getenv("MODULEPATH_ROOT")
local mdir = pathJoin(mroot,"Compiler/gcc", "4.9")
prepend_path("MODULEPATH", mdir)

This code asks the environment for MODULEPATH_ROOT which is /opt/apps/modulefiles and the last
two lines prepend /opt/apps/modulefiles/Compiler/gcc/4.9 to the MODULEPATH .

The modulefiles for the MPI implementations are placed under the Compiler directory because they only depend on
a compiler. The openmpi module file for the gcc-4.9.2 compiler is then stored at /opt/apps/modulefiles/
Compilers/gcc/4.9/openmpi/1.8.2.lua and it contains:

-- Setup Modulepath for packages built by this MPI stack
local mroot = os.getenv("MODULEPATH_ROOT")
local mdir = pathJoin(mroot,"MPI/gcc", "4.9","openmpi","1.8")
prepend_path("MODULEPATH", mdir)

The above code will prepend /opt/apps/modulefiles/MPI/gcc/4.9/openmpi/1.8 to the MOD-
ULEPATH.

We store packages as follows:

38 Chapter 5. Advanced Topics

Lmod Documentation, Release 6.0

1. Core packages: /opt/apps/pkgName/version

2. Compiler dependent packages: /opt/apps/compilerName-version/pkgName/version

3. MPI-Compiler dependent packages: /opt/apps/compilerName-version/mpiName-version/pkgName/version

When MODULEPATH changes, Lmod unloads any modules which are not currently in the MODULEPATH and
then tries to reload all the previously loaded modules. Any modules which are not available are marked as inactive.
Those inactive modules become active if found with new MODULEPATH changes.

Note: In all of the example above, We have used just the first two version numbers. In other words, we have use 4.9
and not 4.9.2 and similarly 1.8 instead of 1.8.2. It is our view that for at least compilers and MPI stacks that the third
digit is typically a bug fix and doesn’t require rebuilding all the dependent packages. Y.M.M.V.

5.3 Configuring Lmod for your site

How to configure Lmod to match site expectations?

5.4 How does Lmod convert TCL modulefile into Lua

Lmod uses a TCL program call tcl2lua.tcl to read TCL modulefiles and convert them to lua. The whole TCL mod-
ulefile is run through. However instead of executing the “module functions” they are converted to Lua. For example,
suppose you have the following simple TCL modulefile for git:

#%Module
set appDir $env(APP_DIR)
set version 2.0.3

prepend-path PATH "$appDir/git/$version/bin"

Assuming that the environment variable APP_DIR is /apps then the output of the tcl2lua.tcl program would be:

prepend_path("PATH", "/apps/git/2.0.3/bin")

Note that all the normal TCL code has been evaluated and the TCL prepend-path command has been converted to a
lua prepend_path function call.

Normally this works fine. However, because Lmod does evaluate the actions of a TCL module file as a two-step
process, it can cause problem. In particular, suppose you have two TCL modulefiles:

Centos:

#%Module
setenv SYSTEM_NAME Centos

And B:

#%Module
module load Centos

if { $env(SYSTEM_NAME) == "Centos" } {
do something

}

5.3. Configuring Lmod for your site 39

Lmod Documentation, Release 6.0

When Lmod tries to translate the B modulefile into lua it fails:

load("Centos")
LmodError([[/opt/mfiles/B: (???): can't read "env(SYSTEM_NAME)": no such variable]])

This is because unlike the TCL/C Module system, the module load Centos command is converted to a function call,
but it won’t load the module in time for the test to be evaluated properly.

The only solution is convert the B modulefile into a Lua modulefile (B.lua):

load("Centos")
if (os.getenv("SYSTEM_NAME") == "Centos") then

-- Do something
end

The Centos modulefile does not have to be translated in order for this to work, just the B modulefile.

As a side note, you are free to put Lua modules in the same tree that the TCL/C Module system uses. It will ignore
files that the first line is not #%Module and Lmod will pick B.lua over B.

5.5 Generic Modules

Lmod provides inspection functions that describe the name and version of a modulefile as well as the path to the
modulefile. These functions provide a way to write “generic” modulefiles, i.e. modulefiles that can fill in its values
based on the location of the file itself.

These ideas work best in the software hierarchy style of modulefiles. For example: suppose the following is a
modulefile for Git. Its modulefile is located in the “/apps/mfiles/Core/git” directory and software is installed in
“/apps/git/<version>”. The following modulefile would work for every version of git:

local pkg = pathJoin("/apps",myModuleName(),myModuleVersion())
local bin = pathJoin(pkg,"bin"))
prepend_path("PATH",bin)

whatis("Name: ", myModuleName())
whatis("Version: ", myModuleVersion())
whatis("Description: ", "Git is a fast distributive version control system")

The contents of this modulefile can be used for multiple versions of the git software, because the local variable bin
changes the location of the bin directory to match the version of the used as the name of the file. So if the module file
is in /apps/mfiles/Core/git/2.3.4.lua then the local variable bin will be /apps/git/2.3.4.

5.5.1 Relative Paths

Suppose you are interested in modules where the module and application location are relative. Suppose that you have
an $APPS directory, and below that you have modulefiles and packages, and you would like the modulefiles to find
the absolute path of the package location. This can be done with the myFileName() function and some lua code:

local fn = myFileName() -- 1
local full = myModuleFullName() -- 2
local loc = fn:find(full,1,true)-2 -- 3
local mdir = fn:sub(1,loc) -- 4
local appsDir = mdir:gsub("(.*)/","%1") -- 5
local pkg = pathJoin(appsDir, full) -- 6

40 Chapter 5. Advanced Topics

Lmod Documentation, Release 6.0

To make this example concrete, let’s assume that applications are in /home/user/apps and the modulefiles are
in /home/user/apps/mfiles. So if the modulefile is located at /home/user/apps/mfiles/git/1.2.
lua, then that is the value of fn at line 1. The full variable at line 2 will have git/1.2. What we want is to
remove the name of the modulefile and find its parent directory. So we use Lua string member function on fn to find
where full starts. In most cases fn:find(full) would work to find where the “git” starts in fn The trouble is
that the Lua find function is expecting a regular expression and in particular . and - are regular expression characters.
So here we are using fn:find(full,1,true) to tell Lua to treat each character as is with no special meaning.

Line 3 also subtracts 2. The find command reports the location of the start of the string where the “g” in “git” is, We
want the value of mdir to be /home/user/apps/mfiles so we need to subtract 2. This makes mdir have the
right value. One note is that Lua is a one based language, so locations in strings start at one.

It was important for the value of mdir to remove the trailing / so that line 5 will do its magic. We want the parent
directory of mdir, so the regular expressions says greedily grab every character until the trailing / and the %1 says
to capture the string found in and use that to set appsdir to /home/user/apps. Finally we wish to set pkg to
the location of the actual application so we combine the value of appsdir and full to set pkg to /home/user/
apps/git/1.2.

The nice thing about this Lua code is that it figures out the location of the package no matter where it is, as long as the
relation between apps directories and modulefiles is consistent.

Creating modules like this can be complicated. See debugging_modulefiles_label for helpful tips.

5.5.2 Generic Modules with the Hierarchy

This works great for Core modules. It is a little more complicated for Compiler or MPI/Compiler dependent modules
but quite useful. For a concrete example, lets cover how to handle the boost C++ library. This is obviously a compiler
dependent module. Suppose you have the gnu compiler collection (gcc) and the intel compiler collection (intel), which
means that you’ll have a gcc version and an intel version for each version of booth.

In order to have generic modules for compiler dependent modules, there must be some conventions to make this work.
A suggested way to do this is the following:

1. Core modules are placed in /apps/mfiles/Core. These are the compilers, programs like git and so on.

2. Core software goes in /apps/<app-name>/<app-version>. So git version 2.3.4 goes in /apps/git/2.3.4

3. Compiler-dependent modulefiles go in /apps/mfiles/Compiler/<compiler>/<compiler-version>/<app-
name>/<app-version> using the two-digit rule (discussed below). So the Boost 1.55.0 modulefile built with
gcc/4.8.3 would be found in /apps/mfiles/Compiler/gcc/4.8/boost/1.55.0.lua

4. Compiler-dependent packages go in /apps/<compiler-version>/<app-name>/<app-version>. So the same
Boost 1.55.0 package built with gcc 4.8.3 would be placed in /apps/gcc-4_8/boost/1.55.0

The above convention depends on the two-digit rule. For compilers and mpi stack, we are making the assumption
that compiler dependent libraries built with gcc 4.8.1 can be used with gcc 4.8.3. This is not always safe but it works
well enough in practice. The above convention also assumes that the boost 1.55.0 package will be placed in /apps/gcc-
4_8/boost/1.55.0. It couldn’t go in /apps/gcc/4.8/. . . because that is where the gcc 4.8 package would be placed and it
is not a good idea to co-mingle two different packages in the same tree. Another possible choice would be /apps/gcc-
4.8/boost/1.55.0. It is my view that it looks too much like the gcc version 4.8 package location where as gcc-4_8
doesn’t.

With all of the above assumptions, we can now create a generic module file for compiler dependent modules such as
Boost. In order to make this work, we will need to use the hierarchyA function. This function parses the path of the
modulefile to return the pieces we need to create a generic boost modulefile:

hierA = hierarchyA(myModuleFullName(),1)

5.5. Generic Modules 41

Lmod Documentation, Release 6.0

The myModuleFullName() function returns the full name of the module. So if the module is named boost/1.55.0,
then that is what it will return. If your site uses module names like lib/boost/1.55.0 then it will return that cor-
rectly as well. The 1 tells Lmod to return just one component from the path. So if the modulefile is located at
/apps/mfiles/Compiler/gcc/4.8/boost/1.55.0.lua, then myModuleFullName() returns boost/1.55.0 and the hierarchyA
function returns an array with 1 entry. In this case it returns:

{ "gcc/4.8" }

The rest of the module file then can make use to this result to form the paths:

local pkgName = myModuleName()
local fullVersion = myModuleVersion()
local hierA = hierarchyA(myModuleFullName(),1)
local compilerD = hierA[1]:gsub("/","-"):gsub("%.","_")
local base = pathJoin("/apps",compilerD,pkgName,fullVersion)

whatis("Name: "..pkgName)
whatis("Version "..fullVersion)
whatis("Category: library")
whatis("Description: Boost provides free peer-reviewed "..

" portable C++ source libraries.")
whatis("URL: http://www.boost.org")
whatis("Keyword: library, c++")

setenv("TACC_BOOST_LIB", pathJoin(base,"lib"))
setenv("TACC_BOOST_INC", pathJoin(base,"include"))

The important trick is the building of the compilerD variable. It converts the gcc/4.8 into gcc-4_8. This makes the
base variable be: /apps/gcc-4_8/boost/1.55.0.

Creating modules like this can be complicated. See debugging_modulefiles_label for helpful tips.

A proposed directory structure of /apps/mfiles/Compiler would be:

.base/ gcc/ intel/

.base/
boost/generic.lua

gcc/4.8/boost/

1.55.0.lua -> ../../../.base/boost/generic.lua

intel/15.0.2/boost/

1.55.0.lua -> ../../../.base/boost/generic.lua

In this way the .base/boost/generic.lua file will be the source file for all the boost version build with gcc and intel
compilers.

The same technique can be applied for modulefiles for Compiler/MPI dependent packages. In this case, we will create
the phdf5 modulefile. This is a parallel I/O package that allows for Hierarchical output. The modulefile is:

local pkgName = myModuleName()
local pkgVersion = myModuleVersion()
local pkgNameVer = myModuleFullName()

local hierA = hierarchyA(pkgNameVer,2)

(continues on next page)

42 Chapter 5. Advanced Topics

Lmod Documentation, Release 6.0

(continued from previous page)

local mpiD = hierA[1]:gsub("/","-"):gsub("%.","_")
local compilerD = hierA[2]:gsub("/","-"):gsub("%.","_")
local base = pathJoin("/apps", compilerD, mpiD, pkgNameVer)

setenv("TACC_HDF5_DIR", base)
setenv("TACC_HDF5_DOC", pathJoin(base,"doc"))
setenv("TACC_HDF5_INC", pathJoin(base,"include"))
setenv("TACC_HDF5_LIB", pathJoin(base,"lib"))
setenv("TACC_HDF5_BIN", pathJoin(base,"bin"))
prepend_path("PATH", pathJoin(base,"bin"))
prepend_path("LD_LIBRARY_PATH", pathJoin(base,"lib"))

whatis("Name: Parallel HDF5")
whatis("Version: " .. pkgVersion)
whatis("Category: library, mathematics")
whatis("URL: http://www.hdfgroup.org/HDF5")
whatis("Description: General purpose library and file format for storing scientific
→˓data (parallel I/O version)")

We use the same tricks as before, It is just that since the module for phdf5 built by gcc/4.8.3 and mpich/3.1.2 will be
found at /apps/mfiles/MPI/gcc/4.8./mpich/3.1/phdf5/1.8.14.lua. The results of hierarchyA(pkgNameVer,2) would be:

{ "mpich/3.1", "gcc/4.8" }

This is because the hierarchyA works back up the path two elements at a time because the full name of this package is
also two elements (phdf5/1.8.14). The base variable now becomes:

/apps/gcc-4_8/mpich-3_1/phdf5/1.8.14

The last type of modulefile that needs to be discussed is an mpi stack modulefile such as mpich/3.1.2. This modulefile
is more complicated because it has to implement the two-digit rule, build the path to the package and build the new
entry to the MODULEPATH. The modulefile is:

local pkgNameVer = myModuleFullName()
local pkgName = myModuleName()
local fullVersion = myModuleVersion()
local pkgV = fullVersion:match('(%d+%.%d+)%.?')

local hierA = hierarchyA(pkgNameVer,1)
local compilerV = hierA[1]
local compilerD = compilerV:gsub("/","-"):gsub("%.","_")
local base = pathJoin("/apps",compilerD,pkgName,fullVersion)
local mpath = pathJoin("/apps/mfiles/MPI", compilerV, pkgName, pkgV)

prepend_path("MODULEPATH", mpath)
setenv("TACC_MPICH_DIR", base)
setenv("TACC_MPICH_LIB", pathJoin(base,"lib"))
setenv("TACC_MPICH_BIN", pathJoin(base,"bin"))
setenv("TACC_MPICH_INC", pathJoin(base,"include"))

whatis("Name: "..pkgName)
whatis("Version "..fullVersion)
whatis("Category: mpi")
whatis("Description: High-Performance Portable MPI")
whatis("URL: http://www.mpich.org")

The Two Digit rule implemented by forming the pkgV variable. The base and mpath are:

5.5. Generic Modules 43

Lmod Documentation, Release 6.0

base = "/apps/gcc-4_8/mpich-3_1/phdf5/1.8.14"
mpath = "/apps/mfiles/MPI/gcc/4.8/mpich/3.1"

The rt directory contains all the regression test used by Lmod. As such they contain many examples of modulefiles.
To complement this description, the rt/hierarchy/mf directory from the source tree contains a complete hierarchy.

5.6 The Interaction between Modules, MPI and Parallel Filesystems

Items to discuss:

1. This is a complicated issue with many parts.

2. Mention Bash startup: What does a non-prompt non-login interactive shell mean.

3. MPI startup: non-login interactive shells.

4. Lustre and MDS and finding a module.

5. ibrun passing of the environment

6. Why unguarded module commands are a problem

7. Why TACC makes the module command a no-op when on a compute node.

5.7 Lmod on Shared Home File Systems

Sites that use a shared home file system across multiple clusters should take some extra steps to ensure the smooth
running of Lmod. Typically each cluster will use different modules.

There are three steps that will make Lmod run smoothly on a shared home filesystem:

1. It is best to have a separate installation of Lmod on each cluster.

2. Define the environment variable “LMOD_SYSTEM_NAME” uniquely for each cluster.

3. If you build a system spider cache, then build a separate cache for each cluster.

A separate installation on each cluster is the safest way to install Lmod. It is possible to have a single installation but
since there is some C code build with Lmod, this has to work on all clusters. Also the location of the Lua interpreter
must be exactly the same on each cluster.

It is also recommended that you set “LMOD_SYSTEM_NAME” outside of a modulefile. It would be bad if a module
purge would clear that value. When you set this variable, it makes the module collections and user spider caches
unique for a given cluster.

A separate system spider cache is really the only way to go. Otherwise a “module spider” will report modules that
don’t exist on the current cluster. If you have a separate install of Lmod on each cluster then you can specify the
location of system cache at configure time. If you don’t, you can use the “LMOD_RC” environment to specify the
location of the lmodrc.lua file uniquely on each cluster.

Lmod knows about the system spider cache from the lmodrc.lua file. If you install separate instances of Lmod on each
cluster, Lmod builds the scDescriptT table for you. Otherwise you can modify lmodrc.lua to point to the system cache
by adding scDescriptT to the end of the file:

scDescriptT = {
{
["dir"] = "<location of your system cache directory>,

(continues on next page)

44 Chapter 5. Advanced Topics

Lmod Documentation, Release 6.0

(continued from previous page)

["timestamp"] = "<location of your timestamp file",
},

}

where you have filled in the location of both the system cache directory and timestamp file.

5.8 System Spider Cache

Now with version 5.+ of Lmod, it is now very important that sites with large modulefile installations build system
spider cache files. There is a file called “update_lmod_system_cache_files” that builds a system cache file. It also
touches a file called “system.txt”. Whatever the name of this file is, Lmod uses this file to know that the spider cache
is up-to-date.

Lmod uses the spider cache file as a replacement for walking the directory tree to find all modulefiles in your
MODULEPATH. This means that Lmod only knows about system modules that are found in the spider cache. Lmod
won’t know about any system modules that are not in this cache. (Personal module files are always found). It turns
out that reading a single file is much faster than walking the directory tree.

While building the spider cache, each modulefile is evaluated for changes to MODULEPATH. Any directories added to
MODULEPATH are also walked. This means if your site uses the software hierarchy then the new directories added by
compiler or mpi stack modulefiles will also be searched.

Sites running Lmod have three choices:

1. Do not create a spider cache for system modules. This will work fine as long as the number of modules is not
too large. You will know when it is time to start building a cache file when you start getting complains how long
it takes to do any module commands.

2. If you have a formal procedure for installing packages on your system, then I recommend you to do the follow-
ing. Have the install procedure run the update_lmod_system_cache_files script. This will create a file called
“system.txt”, which marks the time that the system was last updated, so that Lmod knows that the cache is still
good.

3. Or you can run the update_lmod_system_cache_files script say every 30 minutes. This way the cache file is
up-to-date. No new module will be unknown for more than 30 minutes.

There are two ways to specify how cache directories and timestamp files are specified. You can use “–with-
spiderCacheDir=dirs” and “–with-updateSystemFn=file” to specify one or more directories with a single timestamp
file:

./configure --with-spiderCacheDir=/opt/mData/cacheDir --with-updateSystemFn=/opt/
→˓mdata/system.txt

If you have multiple directories with multiple timestamp files you can use “–with-spiderCacheDescript=file” where
the contents of the “file” is:

cacheDir1:timestamp1
cacheDir2:timestamp2

Lines starting with ‘#’ and blank lines are ignored. Please also note that a single timestamp file can be used with
multiple cache directories.

5.8. System Spider Cache 45

Lmod Documentation, Release 6.0

5.8.1 How to decide how many system cache directories to have

The answer to this question depends on which machines “owns” which modulefiles. Many sites have a single location
where their modulefiles are stored. In this case a single system cache file is all that is required.

At TACC, we need two system cache files because we have two different locations of files: one in the shared location
and one on a local disk. So in our case Lmod sees two cache directories. Each node builds a spider cache of the
modulefiles it “owns” and a single node (we call it master) builds a cache for the shared location.

5.8.2 What directories to specify?

If your site doesn’t use the software hierarchy, (see How to use a Software Module hierarchy for more details) then
just use all the directory specified in MODULEPATH. If you do use the hierarchy, then just specify the “Core” direc-
tories, i.e. the directories that are used to initialize Lmod but not the compiler dependent or mpi-compiler dependent
directories.

5.8.3 How to test the Spider Cache Generation and Usage

In a couple of steps you can generate a personal spider cache and get the installed copy of Lmod to use it. The first
step would be to load the lmod module and then run the update_lmod_system_cache_files program and place the
cache in the directory ~/moduleData/cacheDir and the time stamp file in ~/moduleData/system.txt:

$ module load lmod
$ update_lmod_system_cache_files -d ~/moduleData/cacheDir -t ~/moduleData/system.txt
→˓$LMOD_DEFAULT_MODULEPATH

Here we have use the trick that Lmod keeps track of the Core module directories in
LMOD_DEFAULT_MODULEPATH so it should be safe to use, no matter whether your site is using the
hierarchy or not.

Next you need to find your site’s copy of lmodrc.lua. This can be found by running:

$ module --config
...

Active RC file(s):

/opt/apps/lmod/6.0.14/init/lmodrc.lua

It is likely your site will have it in a different location. Please copy that file to ~/lmodrc.lua. Then change the bottom
of the file to be:

scDescriptT = {
{
["dir"] = "/path/to/moduleData/cacheDir",
["timestamp"] = "/path/to/moduleData/system.txt",

},
}

where you have changed /path/to to match your home directory. Now set:

$ export LMOD_RC=$HOME/lmodrc.lua

Then you can check to see that it works by running:

46 Chapter 5. Advanced Topics

Lmod Documentation, Release 6.0

$ module --config
...

Cache Directory Time Stamp File
--------------- ---------------
$HOME/moduleData/cacheDir $HOME/moduleData/system.txt

Where $HOME is replaced by your real home directory. Now you can test that it works by doing:

$ module avail

The above command should be much faster than running without the cache:

$ module --ignore_cache avail

5.9 Deprecating Modules

There may come a time when your site might want to mark a module for deprecation. If you track module usage, you
can find the modules that are rarely used, and you can find out which users are using the modules. Once you have
decided which modules are marked for removal, you can make a message be printed when the module is loaded.

You can create a file called “admin.list” and place it in “/path/to/lmod/etc/admin.list”. Note that typically the lmod
script will be in “/path/to/lmod/lmod/libexec/lmod”. The etc directory is independent to the version of Lmod. You can
see the location that Lmod is looking for by executing:

$ module --config

Look for “Admin File”. You can also set the “LMOD_ADMIN_FILE” to point to the admin.list file.

The admin file consists of key-value pairs. For example:

moduleName/version: message
<blank line>

Or:

Full_PATH_to_Modulefile: message
<blank line>

The message can be as many lines as you like. The message ends with a blank line. Below is an example:

gcc/2.95: This module is deprecated and will be removed from the system on Jan 1.
→˓1999.

Please change you use of this compiler to a newer one.

boost/1.54.0:
We are having issues

/opt/apps/modulefiles/Compiler/gcc/4.7.2/boost/1.55.0:
We are having issues

Note that you don’t include the .lua part when specifying the version number.

5.9. Deprecating Modules 47

Lmod Documentation, Release 6.0

5.10 Kitchen Sink Modulefiles

Most of the time a modulefile is just a collection of setting environment variables and prepending to PATH or other
path like variables. However, the modulefiles are actually programs so you can do a great deal if necessary.

5.10.1 Introspection

5.11 SitePackage.lua and hooks

Sites may wish to alter the behavior of Lmod to suit their needs. A good place to do this is the SitePackage.lua.
Anything in this file will automatically be loaded every time the Lmod command is run. This file can be used to
provide common functions that can be used in a sites modulefiles. It is also a place where a site can implement their
hook functions.

Hook functions are normal functions that if implemented and registered with Lmod will be called when certain oper-
ations happen inside Lmod. For example, there is a load hook. A site can register a function that is called every time
a module is loaded. There are several hook functions that are discussed in Hook functions.

5.11.1 How to set up SitePackage.lua

Here are two suggestions on how to use your SitePackage.lua file:

1. Install Lmod normally and then overwrite your SitePackage.lua file over this one in the install directory.

2. Create a file named “SitePackage.lua” in a different directory separate from the Lmod installed directory and it
will override the one in the Lmod install directory. Then you should modify your z00_lmod.sh and z00_lmod.csh
(or however you initialize the “module” command) with:

(for bash, zsh, etc)
export LMOD_PACKAGE_PATH=/path/to/the/Site/Directory

(for csh)
setenv LMOD_PACKAGE_PATH /path/to/the/Site/Directory

5.11.2 Implementing functions in SitePackage.lua

For example your site might wish to provide the following function to set MODULEPATH inside your SitePackage:

function prependModulePath(subdir)
local mroot = os.getenv("MODULEPATH_ROOT")
local mdir = pathJoin(mroot, subdir)
prepend_path("MODULEPATH", mdir)

end

This function must be registered with the sandbox so that Lmod modulefiles can call it:

sandbox_registration{ prependModulePath = prependModulePath }

5.11.3 Hook functions

load(. . .): This function is called after a modulefile is loaded.

48 Chapter 5. Advanced Topics

Lmod Documentation, Release 6.0

unload(. . .): This function is called after a modulefile is unloaded.

parse_updateFn(. . .): This hook returns the time on the timestamp file.

writeCache(. . .): This hook return whether a cache should be written.

SiteName(. . .): This hook is used to specify Site Name. It is used to generate family prefix: site_FAMILY_

msgHook(. . .): Hook to print messages after avail, list, spider, LmodError and LmodWarning.

groupName(. . .): This hook adds the arch and os name to moduleT.lua to make it safe on shared filesystems.

avail(. . .): Map directory names to labels

**restore(. . .): This hook is run after restore operation

**startup(UsrCmd): This hook is run when Lmod is called

**packagebasename(s_patDir, s_patLib): This hook gives you a table with the current patterns that spider uses to
construct the reverse map.

5.12 Choices in handling module dependencies

One module can depend on another: e.g. package XYZ depends on boost version 1.51.0. How might a site handle
this?

There are at least four choices:

1. Have module XYZ have prereq(“boost/1.51.0”)

2. Use load(“boost/1.51.0”) in the XYZ module.

3. Use always_load(“boost/1.51.0”) in the XYZ module.

4. Use RPATH to make PACKAGE XYZ know where the right boost 1.51.0 is. The boost module doesn’t need to
be loaded.

5.12.1 Use prereq(...)

One of the obvious choices is to use prereq(). Using this has some advantages. It is clear that if package XYZ
needs boost/1.51.0 and boost isn’t loaded then Lmod generates an error and stops. The user then must load the correct
version of boost and XYZ. For sophisticated users this is good choice. There are no surprises, especially compared
with the next possibility.

However, many users want to use package XYZ and do not wish to have to load the prerequisites especially when
there are more than one. So a site might want to try other options.

5.12.2 Load dependencies directly

A site could make the XYZ module load the boost dependency:

load("boost/1.51.0")

This allows the user to load the XYZ module and the requirements are meant.

The trouble with using load() is when unloading XYZ. Imagine a does the following:

5.12. Choices in handling module dependencies 49

Lmod Documentation, Release 6.0

$ module load boost/1.51.0
$ module load XYZ
...
$ module unload XYZ

At the end of this sequence of commands the boost/1.51.0 has been unloaded because unloading XYZ forces
boost/1.51.0 to be unloaded as well. This may surprise some users who might want to continue using the boost
package. At least with prereq(), your users won’t be surprised by this. Another way to handle this is the next
choice.

5.12.3 Use always_load() instead of load()

A site can chose to use always_load() instead. This command is a shorthand for:

if (mode() == "load") then
load("boost/1.51.0")

end

The TCL equivalent is:

if { [module-info mode load] } {
module load boost/1.51.0

}

These approaches mean that package XYZ and be loaded and the boost dependency is also loaded. But when XYZ is
unloaded the boost module remains. For library dependencies, the next technique has advantages but for non-library
packages dependencies, the always_load() is a good way to go.

5.12.4 Use RPATH

We have switched to using RPATH for library dependencies at TACC. That is when we build package XYZ, we use the
RPATH linking option to link boost/1.51.0 as part of the XYZ rpm. This has the disadvantage that if the boost
package is removed then the XYZ package is broken. This has happened to us occasionally. In general, however, we
have found that this has worked well for us.

5.13 Integration of EasyBuild and Lmod

EB & Lmod work great together.

There are variables you should look into for tuning your system optimally, such as
EASYBUILD_MODULES_TOOL=Lmod, LMOD_PACKAGE_PATH (keep track of loads),
LMOD_SYSTEM_DEFAULT_MODULES (choose buildsets/stages etc)

Here is an example of how to ensure that your users can choose to have (or not) the default directory of EasyBuild under
home ($HOME/.local/easybuild/modules/all) in their $MODULEPATH. Conveniently, by going this way
users can save/restore environments via Lmod, at will.

Features obtained:

1. user modulefiles generated via EasyBuild are easy to enable - less typing, too

2. $MODULEPATH is managed via modulefiles in itself

3. technique is compatible with $LMOD_SYSTEM_DEFAULT_MODULES feature

50 Chapter 5. Advanced Topics

Lmod Documentation, Release 6.0

4. ml save/restore work as desired

Caveats:

• This feature is super-picky on broken module environments, fi: https://bugzilla.redhat.com/show_bug.cgi?id=
1326075 (testable via https://github.com/hpcugent/easybuild-framework/issues/1756) . Fix that asap, or your
modulefiles experience may not be as good as it can!

5.13.1 How to put into use

The two examples are visible below and are ready to be copied in respective filenames use.own.eb/append &
use.own.eb/prepend. Simply place both files in a directory of the existing $MODULEPATH and decide if you
with to append or prepend:

$ ml av use.own

--------------------- /etc/site/modules ---------------------
use.own.eb/append use.own.eb/prepend (D)

------------------- /cm/local/modulefiles -------------------
use.own

Where:
D: Default Module

Use "module spider" to find all possible modules.
Use "module keyword key1 key2 ..." to search for all
possible modules matching any of the "keys".

$ ml use.own.eb/append
$ echo $MODULEPATH
/etc/site/modules:/cm/local/modulefiles:/home/user/.local/easybuild/modules/all

5.13.2 Example use.own.eb/append

$ cat /etc/site/modules/use.own.eb/append
#%Module1.0###
##
use.own.eb modulefile
##
modulefiles/use.own.eb. Generated by fgeorgatos
##
proc ModulesHelp { } {

puts stderr "\tThis module file will add \$HOME/.local/easybuild/modules/all to
→˓the"

puts stderr "\tlist of directories that the module command will search"
puts stderr "\tfor modules. EasyBuild places your own modulefiles here."
puts stderr "\tThis module, when loaded, will create this directory if

→˓necessary."
puts stderr "\n\n"

}

module-whatis "adds your EasyBuild modulefiles directory to MODULEPATH"

(continues on next page)

5.13. Integration of EasyBuild and Lmod 51

https://bugzilla.redhat.com/show_bug.cgi?id=1326075
https://bugzilla.redhat.com/show_bug.cgi?id=1326075
https://github.com/hpcugent/easybuild-framework/issues/1756

Lmod Documentation, Release 6.0

(continued from previous page)

eval set [array get env HOME]
set ownmoddir $HOME/.local/easybuild/modules/all

create directory if necessary
if [module-info mode load] {

if { ! [file exists $ownmoddir] } {
file mkdir $ownmoddir

}
}

module use --append $ownmoddir

5.13.3 Example use.own.eb/prepend

$ cat /etc/site/modules/use.own.eb/prepend
#%Module1.0###
##
use.own.eb modulefile
##
modulefiles/use.own.eb. Generated by fgeorgatos
##
proc ModulesHelp { } {

puts stderr "\tThis module file will add \$HOME/.local/easybuild/modules/all to
→˓the"

puts stderr "\tlist of directories that the module command will search"
puts stderr "\tfor modules. EasyBuild places your own modulefiles here."
puts stderr "\tThis module, when loaded, will create this directory if

→˓necessary."
}

module-whatis "adds your EasyBuild modulefiles directory to MODULEPATH"

eval set [array get env HOME]
set ownmoddir $HOME/.local/easybuild/modules/all

create directory if necessary
if [module-info mode load] {

if { ! [file exists $ownmoddir] } {
file mkdir $ownmoddir

}
}

module use --prepend $ownmoddir

52 Chapter 5. Advanced Topics

CHAPTER 6

Topics yet to be written

1. Optional Software layout, two digit rule

2. Module naming conventions

3. Advanced Topics: priority path, .modulerc tricks

4. settarg

5. tracking module usage

6. converting shell scripts into modulefiles

7. module command and a parallel a file system.

8. inherit

9. internal structure of lmod.

53

Lmod Documentation, Release 6.0

54 Chapter 6. Topics yet to be written

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

55

	PURPOSE
	OVERVIEW
	Introduction to Lmod
	Installing Lmod
	Advanced Topics
	Topics yet to be written
	Indices and tables

